
A finite version of Smoluchowski's coagulation equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys. A: Math. Gen. 24 4889

(http://iopscience.iop.org/0305-4470/24/20/020)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 13:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/24/20
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 24 (1991) 4889-4893. Printed in the UK 

A finite version of Smoluchowski's coagulation equation 

Thor A Bak and Ole Heilmann 
Department of  Chemistry, H C Orsted Institute, University of Copenhagen, Copenhagen, 
Denmark 

Received 13 December 1990. in final form 17 June 1991 

Abstract. We formulate a finite version of Smaluchowski's coagulation equation in which 
molecules of size N react in the normal way whereas molecules of size N to 2N can be 
produced but cannot react. We prove that the solution converges to the solution of the 
infinite system of equations in the limit N + m .  

1. Introduction 

It has been known for many years [ 1,2]  that the coagulation equation for the concentra- 
tions of k-mers ck( f ) ,  k = 1 ,2 ,3 ,  . . . , f 0, 

with the initial condition c k ( 0 )  = has the solution 
kk-2 

Ck=- f * - I  exp( - kt) 
k! 

for 0 s  f < 1. During this time ZF=, kck is conserved (and is conveniently normalized 
to 1) and all higher moments of the molecular weight distribution also exist. At f = 1, 
however, a singularity occurs in the sense that the second moment (and all higher 
moments) diverge and for f >  1, ZF=, kck decreases, i.e. there is now no longer any 
mass conservation. 

It is, however, possible to continue the solution [3-51 given above as 

Note that we can write this solution as 
kk-2 

~ ,=- t~- ' exp[ -kq4~(f ) ]  k! (4) 

with 

O S l S l  

= i: +log f f > l .  
The c,( t )  thus continued satisfies (1) and is everywhere differentiable with a continuous 
derivative. At f = 1 the second derivative does not exist, however, and as mentioned 
above the second moment 
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k2ck diverges. 
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2. A finite model 

The above-mentioned divergence is commonly ascribed to the existence of a gel, an 
infinitely large molecule, which can be formed from the reaction described by ( l ) ,  but 
which is not properly taken into account in this equation. That mass conservation 
breaks down, then means that there is a mass flux from sol to gel, with particles 
escaping to infinity. It is the purpose of this paper to elucidate this state of affairs by 
studying a finite system, whose size we will eventually allow to increase without bounds. 
We set 

T A  Bak and 0 Heilmann 

k k 5 N  
u X = { O  k > N  ( 6 )  

and write the coagulation equations as 
m 

(7)  d X -. -; x uiujcicj-ukcX 1 qc,. 
;+ j=k  j= ,  

These equations were first considered by Lushnikov and Piskunov [ 6 ]  as pointed out 
to us by an anonymous referee. Clearly these equations can form particles of size k 
with 2 5  k a 2 N ,  but only the particles 1 s  k s  N can participate in the process of 
building up larger particles. In the language of polymer chemistry the k-mers with 
1 5  k 5 N constitute the sol, whereas those with N < j < 2 N  constitute the gel. It is 
easy to verify that XEyl ki, = 0, i.e. we have mass conservation when we include the 
gel. The problem w e  shall study obviously has two sides to it. (1) Can the finite- 
dimensional equation (7) be solved-possibly approximately-for arbitrary N ?  (2) 
Can the limiting process N + m be carried out, and does any useful information accrue 
from this? 

/ 

3. The limit N + m  

It is immediately obvious that by introducing 
N I  

k = I  0 
+ ~ ( f ) =  I mkCx(f')dr' 

$,-,(I)= 1 kCX(c) 
N 

X - 1  

we can write the solution to (7) corresponding to ck(0) = S X l  as 
kX-2 

ck(r)=- f k - l  exp[-k+,(t)] 1 S k s N  ( 9 )  k! 

'$N(O) = o  +"= 1. 
The expressions given in (9) and (10) are equivalent to (28)-(30) in [61. The only 
differences are that the notation used here is more convenient for our purpose, and 
that we do  not use the scaled time T introduced by Lushnikov [6,7]. Formally our 
equation (10) can be solved if, following Lushnikov, one introduces 

K N ( ~ ) =  f exp[-+~(r ) l .  
This does not, however, lead to any useful explicit expression for the solution. 
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If in (10) we formally let N - r m ,  we get, with + ( f )  equal to the formal limit of 
+ N ( t )  as N+m 

with 
m 

J l ( z ) =  1 kk- lzk/k!  (12) 
k = I  

and 

It exp[-+(t)] l~e- ' .  (13) 

Comparing with lemma 2.1 in the paper by Kokholm [ 5 ] ,  we see that (11) has + ' ( t )  
given by ( 5 )  as the solution. What we need to prove is that the limit of (bN( f )  as N + 00 

exists and is identical to +"(t) .  
From mass conservation it follows that 

N 

O S  kck( t )< l  f a 0  
k = I  

and from this follows that 

o< +N( 1 )  S f f > O  

and that $ N ( f )  increases monotonically with f ,  

Comparing (lo),  (11) and (12) we see that 

and for n >  1 it follows from ( 5 )  that the right-hand side is zero. Furthermore, by a 
similar argument it can be seen that 

and we now have: 

Lemma. For every N there exists an E > 0 such that 

+ N ( f ) <  $ N + l ( f )  for O <  f < E. 

Now assume that for some N there exists a f , > O  such that 

$N ( t o )  = + N + l ( f O )  

then from (10) it follows that dN( to )<dN+l ( fO) .  That is for t < f o  we have dNtl( i )< 
& ( t )  which contradicts the lemma. Hence 

+ N ( f ) <  ' $ N + l ( t )  forO<f  (16) 

and comparing with (15) we see that there exists a function +-(f)  such that 

bm(f)= lim $ N ( f ) .  (17) 
N-m 
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T h e  above argument also holds for $"(f) instead of + N + , ( f ) .  Hence 
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d J N ( t ) <  + O ( t )  t > O  (18) 

and thus 

+"(f) f a 0. (19) 

From (8) we have 

& N (  1 )  s 0 t > O  

that is &,( 1 )  is concave and therefore so is &( 1 ) .  Since &( f )  is bounded, it is therefore 
continuous. 

From (8) it also follows that 

O S $ , ( t ) < l  t 3 O  

and from (16) and (10) it follows that 

If there existed a tua 1 such that 

4 m ( f o ) < + u ( f o ) =  1 + b  f o  

then tu exp[ -&( to ) ]  > e-' and this would imply according to Kokholm's lemma 2.1 
that the sum 

k k - 2  

x,(toex~[-+m(tu)l)k 

would diverge. In particular it would imply that there existed an Nu such that 

When this is substituted in (21) we get $ N ( t o ) >  1 which contradicts (20). Thus we can 
conclude that 

&([)a d J O ( t )  for t a l  ( 2 2 )  

and comparing with (19) we get 

&(f)  = + O ( t )  t a l .  

Since &( 1 )  is concave, it cannot lie under the cord connecting (0, &(a)) and (1, &( 1 ) ) .  
Hence &( t )  3 f for 0 < t < 1 and this extends (23) to hold for all t 3 0. 

We have thus proved that the solution of the finite system of equations given by 
(7) in the limit N - t m  is the solution of the infinite system of equations (1) given by (4). 

Since d N ( t )  is bounded uniformly in t and N by (20), h ( f )  ( N =  1 , 2 , .  . .) 
constitute an equicontinuous family, which in turn implies that the convergence of 
6N(t )  to d o ( [ )  is uniform in f for bounded intervals ( O s f s f , < m ) .  The uniform 
convergence of e , ( [ )  (for given k )  then follows from (9); since c , ( t )  is positive and 
decreases towards 0 as f + 00 there is no need to restrict f to bounded intervals in this 
case. Finally, the conservation equation Z k  kck( f )  = 1 implies ck( 1 )  < 1/  k and we have 
the following theorem. 
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Theorem. Define c k N ( t )  for k s  N as the solution to ( 5 )  with the initial condition 
C ~ ~ ( O ) = ~ ~ ,  and c k , N ( f )  = O  for k >  N ;  then c k N ( f )  converges uniformly in k and f 

for f 3 0  to c k ( t )  given by (4) as N + m .  

4. Conclusion 

It is proved that the solution of the system of equations given by (7) in the limit N + m 
will tend uniformly towards the solution of the infinite system of equations given by 
(1) whose existence was proved earlier [3,5]. McLeod [ l ]  using a slightly different 
method of truncation showed the convergence only for 0 < f s 8, where 0 < 1. 

Kokholm [ 5 ]  proved that the solution given by (4) is a unique solution to (1) if 
one requires that the concentrations c k ( f )  ( k  = 1,2,. . .) are continuously differentiable 
functions o f f .  By proving that this solution can also be obtained as a result of a natural 
limiting process, we hope to have shed more light on the physical meaning of the 
singularity in the infinite solution. In particular, it is seen that the solution for f > 1 is 
not an artefact of an infinite system. 

Although we have only proved the convergence of the solution of the finite system 
to the solution of the infinite system for uk = k, one will of course expect this to be 
true for much more general forms of uk, and that the truncation introduced in this 
paper can form the basis for numerical investigations of equations like (1) only with 
the kernel ij replaced by the more general K ,  ; in  particular, since numerical calculations 
on the present model indicate that the convergence is rapid. 
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